[1] Gao, Y., Wang, R. & Hou, F. How to design translation prompts for ChatGPT: An empirical study [A]. R. Wang, Z. Wang & J. Liu (eds.). Proceedings of the 6th ACM International Conference on Multimedia in Asia Workshops [C]. Auckland: Association for Computing Machinery, 2024: 1-7. [2] Hendy, A. et al. How good are GPT models at machine translation? A comprehensive evaluation [DB/OL]. arXiv, 2023. https://doi.org/10.48550/arXiv.2302.09210. (2023-02-18) [2024-06-15]. [3] Jiao, W. et al. Is ChatGPT a good translator? Yes with GPT-4 as the engine [DB/OL]. arXiv, 2023. https://doi.org/10.48550/arXiv.2301.08745. (2023-11-02) [2024-11-25]. [4] Klubička, F., Toral, A. & Sánchez-Cartagena, V. M. Fine-grained human evaluation of neural versus phrase-based machine translation [J]. The Prague Bulletin of Mathematical Linguistics, 2017(108): 121-132. [5] Kocmi, T. & Federmann, C. Large language models are state-of-the-art evaluators of translation quality [A]. M. Nurminen et al. (eds.). Proceedings of the 24th Annual Conference of the European Association for Machine Translation [C]. Tampere: European Association for Machine Translation, 2023: 193-203. [6] Lu, Q. et al. Error analysis prompting enables human-like translation evaluation in large language models [A]. L-W. Ku, A. Martins & V. Srikumar (eds.). Findings of the Association for Computational Linguistics: ACL 2024[C]. Bangkok: Association for Computational Linguistics, 2024: 8801-8816. [7] Peng, K. et al. Towards making the most of ChatGPT for machine translation [A]. H. Bouamor, J. Pino & K. Bali (eds.). Findings of the Association for Computational Linguistics: EMNLP 2023[C]. Singapore: Association for Computational Linguistics, 2023: 5622-5633. [8] Ray, P. P. ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope [J]. Internet of Things and Cyber-Physical Systems, 2023, 3: 121-154. [9] Shi, Y., Shi, C. & Zhou, Z. Error types of machine translation of popular science text [A]. Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing[C]. New York: Association for Computing Machinery, 2019: 1-4. [10] Siu, S. C. ChatGPT and GPT-4 for professional translators: Exploring the potential of large language models in translation [EB/OL]. SSRN, 2023. http://dx.doi.org/10.2139/ssrn.4448091. (2023-05-19) [2024-06-12]. [11] Valli, P. The TAUS quality dashboard [A]. Proceedings of Translating and the Computer 37 [C]. London: AsLing, 2015: 127-136. [12] Wang, L. et al. Document-level machine translation with large language models [A]. H. Bouamor, J. Pino & K. Bali (eds.). Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing[C]. Singapore: Association for Computational Linguistics, 2023: 16646-16661. [13] 蔡强, 董冬冬. 基于GOOGLE神经网络汉英翻译的译后编辑研究——以科技文本为例[J]. 西南石油大学学报(社会科学版), 2020(1): 107-112. [14] 程珊, 张勇. 自贸协定翻译“三合”及信息熵解析:以NAFTA翻译为例[J]. 上海翻译, 2024(1): 43-49. [15] 董晓波, 于银磊. 法律翻译[M]. 北京: 北京大学出版社, 2020. [16] 李奉栖. 人工智能时代人机英汉翻译质量对比研究[J]. 外语界, 2022(4): 72-79. [17] 李克兴. 法律翻译:译·注·评[M]. 北京: 清华大学出版社, 2018. [18] 邱贵溪. 论法律文件翻译的若干原则[J]. 中国科技翻译, 2000(2): 14-17. [19] 宋北平. 法律语言[M]. 北京:中国政法大学出版社, 2012. [20] 韦佑武, 李娜, 赵良威. 机器翻译的译文质量、高频错误类型及解决对策研究: 基于机器翻译的发展史[J]. 现代语言学, 2022(10): 1944-1949. [21] 文旭, 田亚灵. ChatGPT应用于中国特色话语翻译的有效性研究[J]. 上海翻译, 2024(2): 27-34. [22] 熊德米. 英汉现行法律语言对比与翻译研究[M]. 长沙: 湖南人民出版社, 2011. [23] 杨艳霞, 陈莹, 魏向清. 生成式智能时代的人机协同翻译素养研究[J]. 上海翻译, 2025(1): 39-45. [24] 杨玉婉. 神经机器翻译的译后编辑——以《潜艇水动力学》英汉互译为例[J]. 中国科技翻译, 2020(4): 21-23. [25] 赵军峰, 薛杰. 新时代中国特色法治术语的翻译策略:立格与传意[J]. 上海翻译, 2023(1): 24-30. |